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The computer simulation method has been used to examine the equilibrium characteristics of flexible- 
chain concentrations in model lattices in 0 solvents and good solvents. The mean square radius of inertia, 
and the radial distribution functions of density of the units around an isolated (average) unit and around 
the centre of gravity of an arbitrary isolated chain have been calculated. The results of a 'computer 
experiment' have been compared with those predicted by scaling theory. In general 'experimental" 
results are in good agreement with the formulae of scaling theory and with the picture of the 'blob' 
concept. 
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INTRODUCTION 

Recent years have been marked by considerable progress 
in the study of concentrated polymer solutions. 

New experimental techniques, first and foremost the 
study of the fine structure of a polymer solution, including 
the structure of individual 'marked' chains, by the method 
of neutron scattering in a solution of partially deuterated 
polymer, have stimulated the setting-up of theoretical 
investigations. 

This work is developing in two directions. In the area of 
analytical theories, a new approach has been worked out 
which is based on the analogy discovered between the 
description of a polymer system, on the one hand, and 
magnetic material close to the point of phase transition, 
on the other. This has enabled the theory of polymer 
systems to take advantage of developments in the theory 
of phase transitions, and in particular it has enabled the 
principle of scale transformation (scaling) to be carried 
over to polymer systems. 

The other direction is in connection with the direct 
modelling of polymer systems on an electronic computer 
by the Monte Carlo method, i.e. with the setting-up of 
computer experiments. 

In the present work we will discuss and compare some 
results of the theory of scaling and computer experiments 
which provide information on the equilibrium structure of 
solutions of flexible-chain polymers. 

SCALING AND THE CONCEPT OF 'BLOBS' IN 
POLYMER CHAINS 

In this section we present the results of research on the 
constitution diagram of polymer solutions, striving to 
underline the principles and physical content of the 
overall approach. 

In the mid-1970s, De Gennes 1'2 and Des Cloizeaux 3 
discovered that the statistical laws governing lattice 
models of polymer systems (an isolated polymer chain 
and a polymer solution of given concentration) can be 
described by the same relations as statistical laws govern- 
ing the lattice system of spins undergoing a second-order 
transition. 

Here different characteristics prove to be equivalent in 
the 'polymer' and 'magnetic material' systems, for exa- 
mple 1IN ~ AT/T, c ~ - A S ,  etc. (where N is the degree of 
polymerization, the length of the polymer chain; c, the 
concentration of the polymer solution; A T= T-  T~; T~ the 
critical temperature in the magnetic material; AS, the 
entropy of the magnetic material in an external field). 

The origin of the similarity between the polymer and 
the magnetic material can be explained on the basis of 
simple considerations. It is well known that, in a coiled-up 
Gaussian or swollen polymer chain, large-scale fluc- 
tuations of dimensions, of the order of the actual dimen- 
sions, occur. 

Thus, for the radius of gyration of a Gaussian coil4: 
m 

(R 2 - R2) 2 = l~(s R2) 2 

Correspondingly, macroscopic fluctuations of density are 
observed in the coil, i.e. the interaction radius of these 
fluctuations turns out to be of the order of the dimensions 
of the coil and increases to an unlimited degree with 
growth in N. The unlimited increase in the interaction 
radius is also characteristic for the spin system, but in this 
case it is only observed close to the critical point. This 
explains the equivalence of the values 1IN and AT/T. 

The analogy found between the polymer and the 
magnetic material enabled the ideas and the methods of 
the physics of critical phenomena 5 to be carried over to 
polymer systems, and the limits of approximation of the 
mean field, on which the classic work of Flory 6 has been 
based, to be exceeded. Of importance here is the principle 
of scaling (scale transformation), according to which a 
change in the external conditions has the effect of a change 
of scale on the physical characteristics of the system. 

In other words, an exponential dependence of the 
physical characteristics of the system on the external 
parameters (for polymers--on the degree of polymeri- 
zation, the concentration of the solutions, the parameter 
of the excluded volume of units, the parameter of chain 
rigidity, etc.) is postulated. To determine the correspond- 
ing exponents (critical indices of the theory of phase 
transitions), regions of physical conditions are distin- 
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Figure 1 Dependence of the coefficient of swelling ~n.N of a 
segment of a chain of n units on the full length of the chain N. 
The graph is constructed in accordance with the data of ref.8. At 
the extreme right-hand point of each curve, n = N 

guished in which the values of any index can be 
established from general considerations: the results link 
up at the boundary of the regions. 

For polymer solutions, one of the inherent boundaries 
of the regions is the critical concentration for entangle- 
ment of the macromolecules, c/,introduced by Simha 7'23 as 
long ago as 1951 and determining the concentration at 
which the macromolecules in the solution occupy the entire 
volume. 

The concentration c* depends on the mean con- 
centration of units within an isolated macromolecule: 

where 
c* ",~N/R 3 (1) 

R ~/W (2) 

is the mean radius of inertia of the isolated macromo- 
lecule; v =vv=0.6 and v=ve=0.5 for cases of a good (T 
> 0) solvent and a 0 solvent; where all the coefficients 
have been omitted. 

When c < c* the solution is termed dilute, and with c 
>c* it is termed semi-dilute since c* << 1 when N>> 1. 

The principle of scaling can be used in connection with 
any characteristic of a macromolecule. Examining, for 
example, the correlation radius of the density ~, we have 2: 

~ f  R, c <c* 
~ o [ c  V (3) 

~Rt ) , 
where the relations ~ ~ R  and ~ :~(N)  are based on a 
priori physical considerations, and the second part of the 
second line indicates crosslinking. Equations (1)-(3) en- 
able x to be found and correspondingly the concentration 
dependence of ~:2 

fc-  a/4 T > 0 (4) ~~C-V/~3v- 1)~~c- i 0 

H. Birshtein et  al. 

In determining the interaction radius of the density, 
characterizes the dimensions of the regions of non- 
uniformity in polymer solutions. It is revealed directly in 
experiments on the scattering of neutrons in polymer 
solutions. In addition, this value occupies a fundamen- 
tally important place in the physics of polymer systems, 
having served as a basis for the concept of 'blobs'. The 
starting point is the interpretation of ~3 as such an element 
of the volume that the segment of polymer chain-- 
'blob'--located in it (and also in any smaller volume) 
retains all the characteristics inherent in this same seg- 
ment not subjected to the influence of external conditions. 
Thus, in a solution of prescribed concentration c the chain 
segments in the volume, ~3(c) retains the characteris- 
tics corresponding to an isolated segment not subjected to 
the influence of other chains (and also of the remaining 
part of the given chain). 

It is worth noting that a necessary part of this 
interpretation is the supposition that, in the isolated 
chains, the properties of any segment of the chain are 
independent of the dimensions and properties of the chain 
as a whole, and depend only on the interactions within 
this segment. Here we consider it helpful to give data from 
direct modelling on an electronic computer which bear 
out this supposition. 

As can be seen from Fioure 1, the dimensions of the 
segment of the polymer chain depend mainly on the 
properties of this segment and only slightly on the full 
length of the chain and the nature of the interaction in its 
remaining part. 

'Blobs' appear as the main thermodynamic and struc- 
tural unit of the solution with all the values of c such that c 
> c*; much as the macromolecule as a whole is the unit 
when c < c*. The dimensions of the 'blobs' determine the 
osmotic pressure of the solution2: 

~ / T ~ I / ~  3 (5) 

and the dimensions of individual macromolecules are 
represented by Gaussian chains of N/nb 'blobs'2: 

R2~(N)~2 ~N~(2v-1)/v~{ N oT>O (6) 

Here n~ is the number of units in a 'blob', connected with 
by a condition equivalent to (3): 

~~n~, (7) 

The structure of individual 'blobs' depends on the magni- 
tude of the excluded volume effects in them, as a measure of 
which use can be made of the parameter: 

2 
v'cnb ~ znl/2.- 3/2 (8) 

Zb~ Vo(n~) b ~" 

changing to the normal parameter z for the entire 
chain 6'9'1° when nb=N , i.e. in the region of dilute 
solutions. In equation (8), v is the intrinsic volume of the 
unit, V0(nb) is the 0 volume of the chain of n o units, ~ = (T  

- 0)/T, and p is the parameter of chain rigidity, equal to 
the ratio of the length of the rigid segment to its 
diameterlL The influence of the volume effects is 
assessed from the 'yes-no' principle which is characteristic 
of scaling. When Iz~l< 1 the blobs are considered un- 
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Figure 2 Constitution diagram of a polymer solution. I, regions 
of weak solution; II, regions of undiluted solution; I 0 and II 0, 0 
regions; I+ and I1+, regions of favourable excluded volume 
effects z> 0; I, region of adverse excluded volume changes effects., 
The broken curve is the phase interface 

swollen and Gaussian, while when z b > 1 the coefficient of 
swelling of the blobs ~b=R/Ro bears an asymptotic 
relation to z b, so that: 

{ Zlb~ 5 Z b > 1 (9) 
=b ~ Izbl < 1 

The region r < 0  and Iz~[> 1 corresponds to globulari- 
zation of the 'blobs'. Subsequently we shall limit ourselves 
to the region r 1> 0. 

The boundary between the two sets of conditions of 
behaviour of the 'blobs'--swollen and Gaussian ' b l o b s ' -  
is the condition: 

z ~ ~ l  flO) 

which with z~ = z produces also the condition of division 
of the region of dilute solution into two sets of conditions 
of behaviour of the chains as a whole. 

The complete constitution diagram of a polymer 
solution is constructed in refs. 12 and 13 and takes the 
form presented in Figure 2. In the diagram, regions I and 
II correspond to weak and undiluted solutions, with the 
boundary determined by (1), taking into account the 
dependence of the dimensions of the isolated chain on its 
rigidity and the excluded volume effects. 

The indices indicate the nature of the volume effects in 
the structural units of each of the regions. In region I + the 
macromolecules swell as a whole, while in the II + region 
the volume interactions take place only within the 'blobs'. 
In regions I0 and II0 the volume interactions are small, so 
that both the macromolecules as a whole and the 
individual 'blobs' are Gaussian in these conditions. Here 
the II0 region of 0 behaviour of the 'blobs' increases with 
concentration on account of reduction in the dimensions 
of the 'blobs' in accordance with (4). The boundaries of the 
0 regions correspond to condition (10) for the entire chain 

in the case of I0 and for the 'blobs' in the case of II0. 
Expressions for the boundaries of the regions and for 

the characteristics of the chains and 'blobs' in the different 
regions are summarized in Table I. (This table refers only 
to flexible chains. For  rigid chains with p >> 1 see ref. 14.) It 
is evident that all the relationships are linked at the 
boundaries. The II +---dI0 boundary can be intersected by 
altering c with a fixed z value, and therefore it is presented 
in Table I in the equivalent forms z*= z(c) and c**= c(z). 

We shall turn our attention to the following re- 
lationships in Table 1. While the volume effects (growth 
in ~) and rigidity (growth in p) increase the dimensions of 
the chains as a whole, the dimensions of the individual 
'blobs' and the number of units in them with a given 
concentration turn out to be the smaller, the greater the 
values ofp  and r. (In the I + and II + regions, these values 
are always present in the form of the product pr.) In this 
case the mean density of the units in a 'blob': 

c b ~ n d ¢ 3 ~ c  (11) 

is independent of the rigidity and excluded volume and 
depends only on the concentration of the solution. 

In order to understand the dependence of n b and ~ on p 
and z, we shall examine the mean density of the intrinsic 
units of the segment of an isolated chain of n units. For 
example, let the value of z, in the given segment exceed 
unity. Then 

r/ 
.,~ ( n a p 3 z 3 )  - 1/3 ~ (s4p,r) - 1/3 (12)  

Cn"~S3(n  ) 

where s a is the volume of the segment. 
With a given n (or s) value, the more rigid the chain and 

the greater the distance between z and the 0 point, the 
smaller is the density of the units of the segment in its 
volume. Reduction in n (or s) causes an increase in the 
mean density of c.. 

A similar result corresponds also to Gaussian segments 
with z, < 1. 

Thus, isolating volumes of different size close to the 
outline of the chain, we obtain a greater density in them 
the smaller the volume isolated. Equation (11) shows that 
such a chain segment, the mean density of which is equal 
to the mean density of the units in the solution, is an 
inherent element of a concentrated solution, i.e. is a 'blob' 
retaining intrinsic characteristics. The solution is a system 
of contacting 'blobs' the dimensions of which decrease as 
the concentration increases and with a given concen- 
tration depend on p and r in accordance with (12). 

In volumes smaller than 3 3 , the chain segments also do 
not change. 

Table I Constitution diagram of polymer solution for flexible 
chains 

Region ~2 ~2 nb Boundaries 

I® Np N -~ r *  ~ (Np.--3) -1 /2 
I+ (N3"rp) 2/5 N ~ (/,~,r3p3)_l/5 

I1+ N(rpc--t) l /4 (.rpc3)--1/2 (.r3p3c5)--l/4 "~c* 
--3 

I® 
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Figure 3 Diagram of the concentration dependence of the 
correlation radius of density ~. Broken line (1), value corresponds 
to I 0 - ,  II 0 transition; full line (2), value of ~ corresponds to I+ --, 
I1+ --, II e transitions 

The concentration dependence of the dimensions of the 
'blobs' with different values of N, p and T, following the 
data of Table I, are shown diagrammatically in Figure 3. 

MODELLING OF POLYMER SOLUTIONS ON 
AN ELECTRONIC COMPUTER:  NON- 
UNIFORMITY OF DISTRIBUTION OF UNITS IN 
SOLUTIONS 

In this section we shall discuss the results of the modelling 
of polymer solutions, carried out by us on an electronic 
computer using the Monte Carlo method, drawing com- 
parison with the data of the previous section. 

We examined a flexible chain model in a simple cubic 
lattice where the probabilities of trans and cis isomers 
present were the same. The Kuhn segment A = 1.5, and 
having determined the asymmetry of the segment accord- 
ingly by the ratio of the length of the Kuhn segment to its 
thickness, we have p = 1.5. Each of the N chain units 
contained an impenetrable nucleus which is one lattice 
cube unit in volume; it reacted with anyother  units of its 
own, or from a foreign chain present in any of four 
adjacent lattice units, at energy ~. A positive ~ characte- 
rized a favourable contact of polymer with polymer, as 
opposed to polymer with solvent (the solvent was model- 
led by empty lattice units), a negative ~ indicated forces of 
repellance existing between randomly approaching chain 
units. The value of e represents the free energy of the 
polymer-polymer contact (as opposed to the polymer- 
solvent contact) and is analogous with parameter Z 
occurring in the solution theory of Flory. 

The quality parameter of the solvent used in this paper 
is z=(eo-e)/eo, where ~o- ~ -0 .3  tS't6. We shall give data 
for cases of 0 solvent with T =0, and a good athermal 
solvent with e = 0 and T = 1. 

The effects of concentration were considered using 

periodic limiting conditions, namely by dividing all the 
space into cubes of edge l, which were equally filled with 
the polymer chains. One from amongst the possible states 
which was considered by the method is illustrated in 
Figure 4, which shows that chain part I protrudes from 
one cube into an adjacent until it reaches the given length 
N, while another chain II enters from the opposite end at 
the same time, and is regarded as a 'foreign chain'. Having 
constructed one chain of N units in one cube, we 
proceeded to do so in all the others, and then followed it 
by making another chain, etc., until all the space was filled 
with them to some degree, c. The conformation of each 
chain, the selection of its start and orientation were 
produced by means of a random counter; the overall 
number of ways in which the filling with chains was 
produced was (1-1.5)x 10 3. 

The construction method of each separate chain was 
identical with that described elsewhere (see for example 
ref. 16) (Rosenbluth method). A chain unit was accord- 
ingly added in one of five unoccupied lattices bordering 
onto the 'growing end', i.e. the number of forbidden 
configurations in this series, which was considered by way 
of a special standardization, so that all the plotted 
conformations finally had the same probability. In the 
event of even a single chain unit extension probability, 
such an addition was made and the chain termination 
occurred only at the dead end. The 'sample', i.e. particular 
filling method, was then considered unsuccessful, and the 
'sample' was rejected from examination; the plotting of 
chains (construction) was started afresh. 

The systems filled in various manners represented an 
assembly from which the average of all the values 
interesting us was obtained. The calculated numbers of 
intramolecular contacts, etc., were naturally got for all the 
chains regardless of whether they finished inside their own 

- v • = - 

h h ill 
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h h 

_ _ : . _ I -  _ _ : 7  

l 
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Figure 4 The positions of chains consisting of 10 chain units in 
a cube of / =  7 under periodic limiting conditions. I, II and III, 
chains intersecting the edge of the cube; IV, a chain completely 
inside a cube 

1 1 4 8  P O L Y M E R ,  1 9 8 3 ,  Vo l  2 4 ,  S e p t e m b e r  



Computer model l ing of  structure of polymer solutions: T. H. Birshtein et al. 

cube or in any adjacent one. The intramolecular contacts 
were calculated for all the chains inside one cube. 

The edge l of each cube was varied from 11 to 21 and the 
number of chain units N were 60 to 120, so that it was 
possible to study the system at concentrations c = nN/l 3 
from zero to c - 0 . 7  (n =number  of chains starting in a 
particular cube). The findings were independent in prac- 
tice of the selected l and were almost exclusively de- 
termined by chain length N, the solvent quality e and 
concentration c. 

It must be emphasized that all the results refer to 
systems which are at equilibrium. The kinetic factors 
capable of freezing any non-equilibrated states were not 
considered in the calculation. 

The discussion of other characteristics of this system 
are to be found in refs. 17-19. 

Certain characteristics of similar model systems have 
also been investigated in refs. 20-22. On the whole the 
results of all the authors are in agreement. 

Unfortunately, the length of the chains examined in the 
computer experiment is limited to values of N ~< 120. For 
them the conditions N~>n~>l and (R2)1/2~1 (1 is 
the length of the unit), conjectured when deriving the 
relations of the previous section, turn out to be poorly 
fulfulled. Therefore, in a number of cases it is necessary to 
limit oneself to qualitative comparisons only. 

We shall examine the values c* and c** for our system 
(Figure 2). There is a degree of uncertainty in determining 
each of these. We shall assume that c* corresponds to the 
condition 23 c* = 1/[q], where [t/] is the intrinsic viscosity 
of the solution. Then 

N 
c* - (13) 

6(R 2 )3/2 

where R 2 is the mean square of the radius of inertia of the 
isolated chain. For  a chain of 60 units, c*=  0.15 and 0.07 
for a 0 solvent and an athermal solvent respectively; for a 
chain of 120 units, e* =0.12 and 0.043. The value of e** 
depends greatly on p and z. Examining the expressions of 
Table 1 without the additional coefficients, we obtain c** 
= 1 and 0.3 when p = 1 and 1.5 respectively and z = 1. 

We shall begin with an analysis of the correlations in 
the distribution of the units. In Figure 5 the radical 
functions of the distribution of density of the units around 
an isolated (average) unit of the chain in soliations of 
different concentration are presented. Averaging is car- 
ried out for the different chains. On the abscissa, the 
t~2~1/2 values are shown for the examined chains with 
N=60 .  

As can be seen from the figure, where the total density 
p(s) = pi(s)+ pe(s) of the units of the region's own (i) and 
other (e) chains is set apart, non-uniformity of density 
distribution takes place in both regions I and II of the 
constitution diagram. The scale of non-uniformity dimin- 
ishes with growth in concentration both in the 0 solvent 
and in the good solvent. In the 0 solvent, only the 
interchain contribution p~)(s) depends on concentration, 
while in the case of the good solvent a growth in 
concentration affects both pi(s), approaching p~°)(s), and 
p~(s). 

With a given concentration, the size of the region of 
non-uniformity, i.e. the value of the.correlation radius of ~, 
in 0 conditions is appreciably greater than in the athermal 
solvent (Figure 5). This effect correlates with the de- 

pendence presented in Table 1 of the correlation radius of 
density ~ on r in the II+ region, according to which 
~ ~- i/4. For  the conditions under examination with c* < c 
<c**, we have, in accordance with Table 1, ~o/~=1 
'~C- 1/4 

The intermolecular distribution function pc(s) with 
large s values approaches c, while in the region of small s 
values it diminishes both in the 0 solvent and in the good 
solvent, the screening effect being considerably greater in 
the good solvent. For the 0 solvent, the data are described 
approximately by the formula: 

p~)(s) ~- c[1 - p(~)(s)] (14) 

corresponding to the average (within the range of c) 
occupation of all the sites free from units (full curves in 
Figure 5). 

It is worth noting, however, that the value of the total 
density of the units pt°l(s)~-c + (1-c)pl°l(s) which is ob- 
tained in this approximation turns out to be different from 
the limiting value of c in the entire region of p]°)(s)--/= 0, i.e. 
in the entire volume of the coil. On the other hand, 
according to the discussion of the previous section, the 
value of the correlation radius of density ~ with c>c* 
should not depend on the full dimensions of the coil. 

As is shown in ref. 24, in 0 conditions the value of ~0 
depends on the third virial coefficient of interaction of the 
units. The approximate equation (14) does not take into 
account triple correlations of the units, and the accuracy 
of the computer experiment (limited in this case to small c 
values) proves to be inadequate for revealing their 
existence (cf. Figure 8 below). 

In the good solvent, reduction in pc(s) in the region of 
small s values, which is greater than the reduction in the 0 
solvent, occurs against a background of smaller (or at 
least, no greater) intrinsic density of the units with small s 
values, so that the effect does not amount even appro- 
ximately to simple elimination of the occupied sites. 

For  analysis of the concentration dependence of 4, ~ can 
be determined approximately (within the accuracy of the 
coefficient) from the relation: 

pi(~)=e (15) 

For Gaussian chains in a 0 solvent, calculation gives 

p~O)(s ) ~ 1 _ O(N-  ':2) 
S 

The results of the computer experiment are described well 
by this expression, and here the correction term for chains 
with N ,-~ 100 is not negligible. Hence, in accordance with 
(15), we obtain 

¢<0)~[c+O( N-,/2)] , 

in accordance with the data in Table 7 for long chains, ~!0~ 
~c  -1. For chains in the good solvent the value of 
was determined by means of equation (15) from graphs of 
the function pi(s) with different c values. As is evident from 
Figure 6, the values obtained correspond to the re- 
lationship ~ ~ c-  0.71 in good agreement with ~ ~ c-  3/4 for 
region II+ as per Table I. 

The variation of the density of the units in polymer 
solutions, i.e. the presence of regions where p(s)> c, means 
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Figure 5 Radial functions of the distribution of density of units around an isolated (average) chain unit. The total density of units p = Pi 
+Pc with ~=0 (a) and ~=~o (b); Pi and Pe functions with ~=0 (c) and ~=~0 (d); the full curves in (d) are in accordance with (14). 
The concentration of the solution c= 0.0037 (1), 0.11 (2) and 0.19 (3). N=60 for all concentrations 

b 

d 

that there are also concentrations of sites unoccupied by 
polymer chains, i.e. holes occupied by solvent. In Figure 7 
paired hole-hole radial distribution functions g0o(S) are 
presented for solutions of different concentrations. Com- 
parison of data for good solvents and 0 solvents shows 
that a stronger interaction of units in 0 solvents also leads 
to stronger interaction of the holes. 

We shall examine the distribution of the density of units 
~(s) (those of the chain and other units) around the centre 
of gravity of an arbitrary isolated chain (Figure 8) as yet 
another characteristic of the non-uniformity of a solution. 
This value has been calculated by us in a wider range of 
concentrations, including c > c**. Successive smoothing 
of the non-uniformity of the solution can be seen with 
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The concentration dependence of ~ with ~ = 0 and N = 

_ _  m 

R 2 (c**)= R g , and with further growth in concentration 

there is no dependence of R 2 on c. 
In the region of small c values right down to c/in region 

I +, a concentration dependence of R 2 also should not be 
observed. 

The results of a computer experiment presented in Figure 
9b for chains with N = 6 0  and 120 show that in 
both cases R 2 diminishes with increase in c to 0 values. In 
this case, instead of diagrammatic step curves, more or 
less smooth relationships are observed. For  N--  120, the 
data of the computer experiment are in good agreement 
with the relationship R2(c) constructed in accordance 
with Table I with p = l . 5  and z = l  and with little 
smoothing. For  all N values, no initial plateau of R 2 
b: R 2 (c) appears in the region of small concentrations. It 
seems that the rare random collisions of the molecular 
coils in weak solutions lead in good solvents to partial 
reduction in the swelling of the coils. In this region of 
concentrations, reduction in R 2 with concentration is 
approximately linear (cf. ref. 25). It is clear that a plateau 
in the region of small c values appears when presenting the 
course of R2(c) on a logarithmic scale, since with c <c* the 
dependence of R 2 on c is not of an exponential nature. 

increase in concentration. 
F o r  0 conditions with • = 0, the distribution of density 

of the chain's own units ~°~(s) is independent of con- 
centration, while the function ~l(s) with small c values is 
described approximately by (14) with replacement of p~ 
and p~O~ by ~1 and ~0~. With increase in concentration, the 
deviations of ~ ( s )  from the approximate equation (14), 
connected it seems with triple correlations of density, as 
discussed above, becomes appreciable in Figure 8. 

In a good solvent with concentrations c*<c<c**, 
reduction in pc(s) in the region of small s values is 
considerably greater than in the 0 solvent. With c>c**  
the differences between cases of good solvent and 0 
solvent are eliminated to a considerable degree, ~e(s) 
~-~(s) and ~t(s)~-p~e(s). This is in full agreement with the 
diagram of Figure 2, since with z = 1 and c>c**  the state 
of the system corresponds to the same region II 0 as does 
the state of the system with z =0. It is worth noting that 
the comparatively large values of ~(s) in the system 
examined are not connected with a low N value. 

In conclusion of this section, we shall examine the 
concentration dependence of the dimensions of the chain 
as a whole. According to the data of Table I in 0 conditions 
with z = 0, the dimensions of the chain should not depend 
on concentration, which is also observed in the computer 
experiment (Figure 9b). We have already noted above that 
in 0 conditions the more detailed characteristics of 
chains--functions of the distribution of density of their 
units around a unit of a chain p~°~(s) and around the centre 
of gravity of a chain ~°~(s)--are also independent of 
concentration. 

F o r  a good solvent, Table I forecasts a reduction in the 
dimensions of chains to 0 values with increase in con- 
centration on account of the elimination of swelling of 
chains. In Figure 9a the concentration dependence of/~ 2 is 
presented, following from Table 1 with its literal in- 
terpretation. In the c*<c<c** region, R2/N values 
should lie on a single curve for various molecular masses. 
With p >  1 and z = l ,  there is the limit of c**< 1, where 

INTER-UNIT CONTACTS IN POLYMER 
SOLUTIONS 

An important characteristic of a polymer solution is the 
numbers of contacts between the units of the same or 
various chains, and the dependence of these values on the 
quality of the solvent, the concentration of the solution, 
etc. The number of contacts n i and n e calculated per 
monomer, standardized for the number of sites in the first 
coordination sphere around a unit, determines the local 
density of units p~ and Pe about the frame of the chain. 
Although the pi and pe values were contained in the 
functions p~(s) and p~(s) examined in the previous section, 
we consider it helpful to investigate them in greater detail. 
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Figure 7 Hole-hole radial distribution functions with ~ = 0 
(broken curves) and s0 (full curves), N = 60 
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Figure 8 The distribution of the density of units around the centre of gravity of an isolated chain. The total density of units p=pid-/~e (a), 
Pi (b) and Pe (c) with e=0 (broken curves) and ~ (full curves). The concentration of the solution c=0.037 (1), 0.19 (2) and 0.46 (3) 
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Figure 9 The concentration dependence of the dimensions of chains: (a) in accordance with Table 1 with ~ -- 1 and p = 1 (1) and 1.5 
(2); (b) in accordance with the data of computer experiment with ~ (3), ~=0 and N=60 (4), and e=0 and N--120 (5) 

As was shown in ref. 2, in a good solution (z = 1) in the 
II+ region (diagram in Figure 2), the number of in- 
termolecular contacts calculated per monomer is repre- 
sented by the expression: 

n~ ~ k--~- c (16) 

Generalization of this expression for the case of z < 1 gives 
for region II+: 

(17) ne "" k T  cT 

(We shall note that, in ref. 13, expression (16) was used 
incorrectly for assessing ne with T # 1.). 

Inserting the value = / k T f r o m  (16) into (17) along with 
the dependence of ne on the parameters of the system as 
per Table 1, we obtain the dependence of n e on the 
parameters in the II+ region presented in Table 2. The 
condition of continuity of ne at the II +-II0 boundary and 
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the relation between the parameters at this boundary 
(Table l)  gives for the II0 region: 

n<~c (18) 

It follows from the requirement of continuity of n~ in 
transition between regions of concentrated and dilute 
solution and the evident condition ne---4) with c---~0 that, in 
the I + and I0 regions, n~ is also represented by increasing 
power functions of c. Analysis shows that it is natural to 
identify these functions with the corresponding functions 
in the II+ and II0 regions (the boundary of applicability of 
the expression of n e for 0 regions passes in this case 
through c** ~zp-3  for the entire concentration range). 

As can be seen from Table 2, in 0 regions the interchain 
contacts of the units are present in proportion to their 
mean concentration. The relation: 

n~+~(c) /c \~14 
n~'(c) "~tZ p3)  (19) 

where according to the condition for the boundary 
between the regions (Tables I and 2) the right-hand part is 
always less than unity, shows that, with improvement in 
the quality of the solvent in solutions of a prescribed 
concentration, the number of interchain contacts is 
reduced. In other words, reduction in the energy advan- 
tage of the polymer-polymer contact, in comparison with 
the polymer-solvent contact (parameter e of the lattice 

Table 2 

Region n e nbe 

I~ c Nc 
I ~ (cSr- l  p3) 1/4 N (c Sr- lP3) 1/4 

I1+ (cSf- lp3) 1/4 r - 1  

11(9 c c--lP -3  

* The bou_~dary of applicabiliw of these expressions passes through 
c * *  ~ ~'p 

model), leads to a reduction in the number of interchain 
contacts. With growth in the rigidity of the chain, this 
effect is levelled out and the value ofn~ ÷~ grows, approach- 
ing n~ ~. 

A characteristic feature of n~ ÷~ is the deviation from 
proportional increase with concentration; we have n e 

e TM, which directly indicates the inapplicability in this 
case of the concept of the mean field. The course of ne 
= n~(c) is presented diagrammatically in Figure 10. 

Knowing n~ and the number of units nb in a 'blob' (Table 
I), it is possible to assess the number of contacts required 
for a 'blob' nb~, and in this way to obtain yet another 
characteristic of the pattern of the 'blobs' in a solution. 
The dependences of nb~ on the parameters of the system 
are presented in Table 2 and in Figure 10. In regions I, nbe 
grows with concentration (linearly in the 0 region, as c 5/4 
in the region of good solvent). This is connected with 
growth in n e with constancy of the dimensions of the 'blob' 
macromolecule as a whole. 

With a critical concentration c* of overlapping of 
macromolecules in conditions of a good solvent, the 
number of contacts calculated per 'blob' (macromolecule 
with e*) amounts to nbe ~ r -  1, and this quantity maintains 
a constant value in the entire II + region with a prescribed 
z value. With T = 1, nbe ~ 1, and consequently a chain 
segment that is of the order of the mean distance between 
the two interchain contacts is the independent unit--  
'blob'. This segment retains the properties characteristic 
of an isolated chain, and its dimensions ~ determine the 
correlation radius of density. Thus, with z = 1, each 
interchain contact leads to screening of the density 
correlations in the solution. As the quality of the solvent 
deteriorates (r diminishes), the effectiveness of the 
screening action of the contacts decreases. The correlation 
radius of ~ depends on the size of the chain segment taking 
part in the z-1 intermolecular contact. 

With a fixed quality of solvent, growth in concentration 
in the II + region leads to increase in he, and correspond- 
ingly n b decreases so that the condition nb~ = nbn ~ 
=constant  (c) is fulfilled. 

A different behaviour of nbe is observed in the 0 regions. 
At the c* transition point from the Io to the II0 region, nb~ 
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Figure 10 The concentration dependence of local density. (a) and (b)  Diagrammatic relationships of (a) ne(C ) and (b) nbe(C ) in 
accordance with Table I. Broken lines, I 0 --, II 0 transit ion; ful l  curves, I+ ~ I1+ - ,  II 0 transit ions; (p3/T)2 > (p3/z) l .  (c) Data of computer 
experiment for n i and n e w i th  e = 0  (ful l  curves) and s o (broken curves) 
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",.Ni/2p -3/2, i.e. with occupation of the volume by 
Gaussian spheres, there are ~ N 1/2 contacts of each chain 
with others. This corresponds to the mean number of 
contacts arising with location of a chain of N units in a 
medium with a unit density c/=N-1/2p -3/2, and in- 
dicates the free penetration of Gaussian spheres into each 
other. It is worth bearing in mind that in a good solvent 
the number ofintermolecular contacts of the chain with c* 
is independent of N, i.e. the chains are only in slight 
contact with each other. 

With growth in c and transition into the II0 region, the 
number of contacts in a 'blob' begins to decrease on 
account of the fact that the length of the segment in the 
'blob' n b,~ c-2 decreases with c more intensely than the 
density of the contacts ne.,.c grows. The inconstancy of 
the number of paired contacts in a 'blob' in the II0 region 
shows directly that, as has already been discussed above, it 
is not these paired contacts which govern the dimensions 
of the region of non-uniformity in 0 conditions. 

We believe that the non-equivalence of the values n~ 
and 1/n, in 0 conditions should become apparent in an 
upsetting of the equilibrium (determined by nb) and 
dynamic (determined by the number of contacts ne) 
interaction radii. 

The entire examination so far has completely ignored 
the existence of intrinsic intrachain local density Pv Data 
from the computer experiment are presented in Figure I O. 
It is evident that in 0 conditions p~O)~_ constant (c), and 
with ~ = 1, p~ increases with growth in concentration, 
approaching p~O). It is worth noting that, within the limits 
of the computer experiment, we do not find the constancy 
ofp~, i.e. a local structure of the chain, in the region of low c 
values which is forecast by scaling. 

As demonstrated by Figure 10, the relationship p,(c) 
observed in the computer experiment as a whole is similar 
to the diagrammatic relationship examined above. In 0 
conditions, p~) increases in proportion to c. With z = 1, 
p,(c) is always less than in 0 conditions, and the re- 
lationship p,(c) is curved, i.e. it corresponds to a power 
function with a power index exceeding unity in accor- 
dance with Table 2. 

At the same time there are also differences associated, it 
seems, with the value p~/=0 and its concentration de- 
pendence. In a 0 solvent, the observed relationship p~) is 

~(o) ~ Kc, described approximately by the straight line pe - 
where K = 0.65. Evidently, with random occupation of all 
the empty sites, it should be expected that K=(1-p~°)) 
=0.85 (cf. ref. 6). 

Analysis of the relationships pi(c) and pe(C) with z = 1 

showed that with c<c** they are presented appro- 
ximately in the form 

p(c)=pi(c)+ pe(c)=p~(c=O)+ Ac T M  (20) 

and with c > c** the relationship p(c) approaches a linear 
one. This result correlates with the data of Table 2. 
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